Олимпиада «Физтех» . 2025 год, профиль «научно-технический». Решения экспериментального тура.

Сыпучее трение (2.0). 9 и 10 класс.

I. Теория

Рассмотрим линейку шириной w (толщиной пренебрегаем), погружённую вертикально в сыпучий материал (гречку) на глубину h. Предположим, что давление внутри гречки нарастает линейно с глубиной от 0 на поверхности до некоторого значения $p(h) = \rho q h$ на глубине h.

1. Малые глубины (до критической высоты - для 9 класса).

Среднее давление на боковые стенки на глубинах от 0 до h равно $\frac{\rho gh}{2}$, так как давление возрастает линейно с высотой. Площадь боковой поверхности линейки за счёт её ширины w и погружения h равна $S=w\cdot h$.

Тогда полная нормальная сила, действующая на линейку за счёт давления, равна

$$N = \frac{\rho g h}{2} \cdot w \cdot h = \frac{\rho g w}{2} h^2.$$

Сила трения в сыпучей среде (в нашем случае мы будем получать величину статического трения) берётся пропорциональной нормальной силе: $F=\mu\,N$, где μ — коэффициент статического трения «линейка—гречка». Следовательно, не забывая, что у линейки две стороны, получаем:

$$F(h) = \mu \rho g w h^2.$$

На практике при $h \leq h_{\rm crit}$ (где $h_{\rm crit}$ — условная «предельная глубина», за которой гречка начинает распределять давление преимущественно на стенки) эта формула описывает квадратичный рост силы трения с глубиной. Именно эта сила (за вычетом веса самой линейки) необходима для того, чтобы достать линейку из цилиндра с гречкой.

2. Глубина больше $h_{\rm crit}$ (далее теор. часть только 10го класса).

Когда h становится больше некоторой критической величины $h_{\rm crit}$, давление достигает своего «предельного» значения уже на глубине $h_{\rm crit}$ и дальше не растёт. График давления превращается в линейную зависимость выходящую на некоторую константу.

Тогда итоговое (среднее) давление по всей глубине уже не растёт квадратично, и сила трения перестаёт возрастать как h^2 . Окончательно для $h \ge h_{\rm crit}$ (в простейшем случае) получаем:

$$F(h) = \mu \rho g w \left(h_{\text{crit}}^2 + h_{\text{crit}} (h - h_{\text{crit}}) \right).$$

Это означает, что на участке от 0 до $h_{\rm crit}$ давление растёт линейно (давая квадратичный вклад в силу), а с $h_{\rm crit}$ до h оно остаётся постоянным (линейный вклад).

3. Наклон линейки.

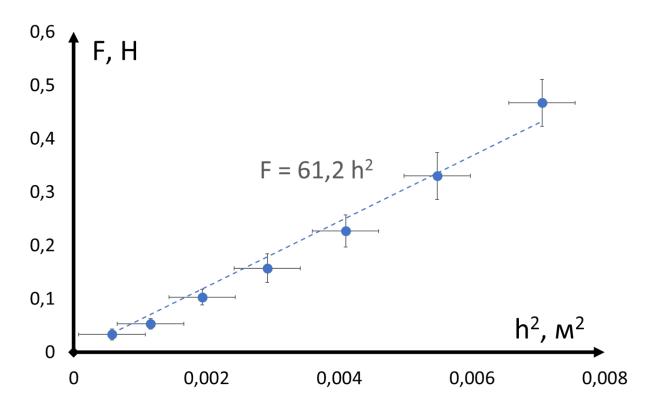

Если линейка погружена под углом θ к вертикали, эффективная «глубина» каждой точки будет меньше. Можно показать аналогично — давление растёт от 0 до $\rho g L \cos \theta$ вдоль длины L (если L — длина погружённой части).

$$F(h) = \mu \rho g w L^2 \cos \theta = \mu \rho g w h^2 / \cos \theta.$$

Аналогично заменяется и $h_{\rm crit}$. Правильным решением будет как зависимость F от длины погруженной части, так и от высоты погружения.

II. Эксперимент

1) Для измерения наспыпной плотности гречки взвешиваем цилиндр, засыпаем в него гречку, измеряем её объём по делениям цилиндра. Далее вычисляем: $\rho = \frac{m_{\rm rp}}{V_{\rm rp}} = 820 \pm 10 \ {\rm kr/m}^3.$



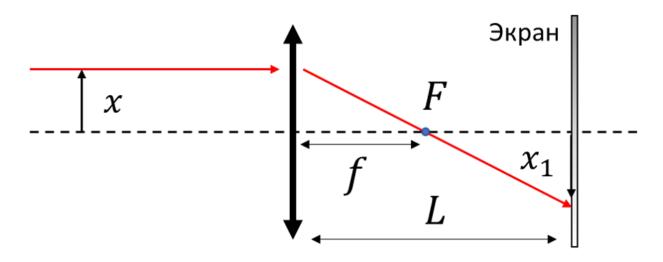
- 2) Для снятия зависимости силы трения от глубины:
 - Погружаем линейку на разную глубину h.
 - Вытаскиваем её медленно и фиксируем силу F по показаниям динамометра (к линейке его можно присоединить скотчем). Для одной высоты необходимо сделать усреднение по трём и более измерениям (значения могут колебаться). Также необходимо вычесть показания динамометра для веса линейки в каждом измерении.
 - Повторяем для нескольких значений h.

Результаты сводим в таблицу $\{(h_i, F_i)\}$.

3) Анализ и линеаризация.

- Для малых h проверяем квадратичную модель, строя график F от h^2 . Если точки ложатся почти на прямую значит $F \propto h^2$.
- При больших h может появиться отклонение от квадратичного роста, что укажет на эффект уплотнения (достижение $h_{\rm crit}$). Однако, такой высоты в эксперименте вы не достигнете.

При учете погрешностей по силе учитывалось отклонение от среднего, по горизонтали - погрешность линейки. Оценка погрешности не обязательна.


4) Зная ширину линейки w и плотность гречки, находим коэффициент статического трения линейки о гречку из углового коэффициента прямой при линеаризации $\mu = \frac{61,2}{820\cdot9.81\cdot0.022} = 0,35 \pm 0,05$.

Оптическая Петри. 9 класс.

І. Теория

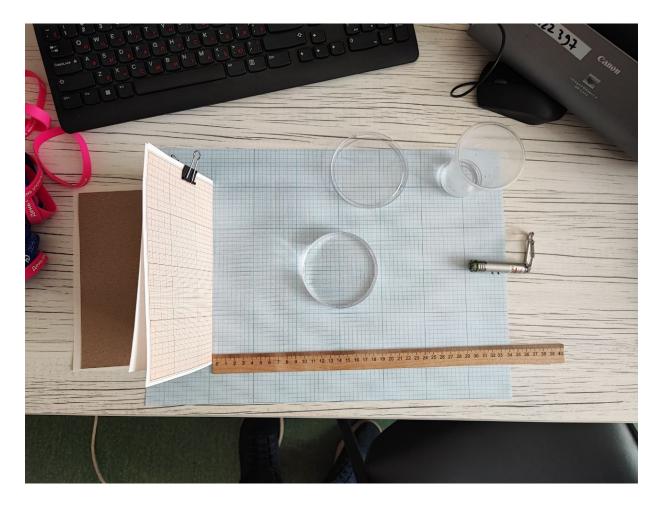
1. Вывод формулы для координаты падающего луча.

Пусть тонкая линза с фокусным расстоянием f находится в плоскости z=0, а экран расположен дальше по оси z на расстоянии L, причём $\mathbf{L}>\mathbf{f}$. Луч, параллельный главной оптической оси, приходит на линзу на расстоянии x от этой оси (см. рис.). После преломления в линзе параллельный луч проходит через фокус, то есть в точке z=f пересекает оптическую ось (x=0). Но экран расположен в плоскости z=L, где L>f, и значит луч уже успевает пересечь ось и «уйти» на другую сторону (далее будем считать, что L>f). Принимаются рисунки для различных случаев отношения L к f.

1. Формула координаты x_1 .

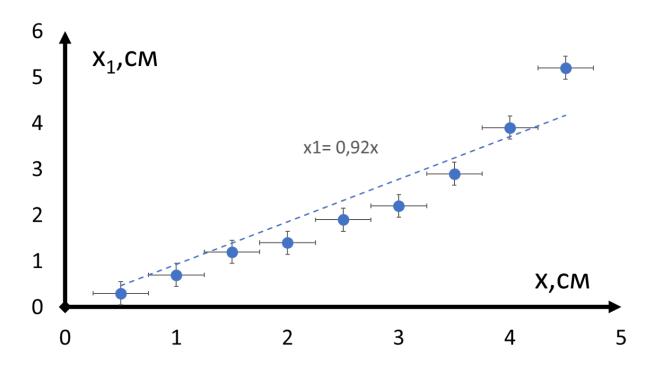
Можно воспользоваться подобием треугольников:

$$x_1 = -\frac{x}{f}(L-f).$$


Или эквивалентно:

$$x_1 = x \frac{f - L}{f}.$$

Важно отметить, что f обычно традиционно обозначает расстояние до изображения. В нашем случае это расстояние до точки фокуса.


II. Эксперимент

1) Установим лазерную указку так, чтобы её луч шёл примерно параллельно столу и попадал в боковые стенки чашки Петри, заполненной водой. Расположите экран (лист картона) за чашкой на расстоянии L. Под установку подложите лист A3 милиметровки.

2) Замеры зависимости $x_1(x)$.

- ullet Выберираем нулевую точку (оптическую ось), смещаем лазер на расстояние x от оптической оси, проверяйте параллельность лазера оптическое оси по милиметровке.
- Для каждого заданного x фиксируем, куда луч попадает на экране (координата x_1).

3) Угловой коэффициент прямой по экспериментальным точкам (так как x_1 на графике у нас отложен по модулю):

$$k_{\rm exp} = -\frac{x_1}{x}.$$

Отсюда находим фокусное расстояние:

$$f = \frac{L}{1 + k_{\text{exp}}} = 6,3 \pm 0,3 \text{ cm}.$$

Важно понимать, что при больших отклонениях от центра, линейная зависимость работать не будет, так как чашка Петри перестаёт работать как тонкая линза. И линейную аппроксимацию нужно строить отдельно для точек до 3 см, там угловой коэффициент оказывается равным $0,75\pm0,05$.

4) В эксперименте чашка Петри, заполненная водой, играет роль «тонкой линзы». Для оценки показателя преломления n часто используют приближение двояковыпуклой линзы радиуса R. Если преломление воды n достаточно близко к 1.33, а толщина стенки чашки мала, то для такой «линзы» справедливо (в первом приближении):

$$\frac{1}{f} = (n-1)\frac{2}{R} \implies f = \frac{R}{2(n-1)}.$$

Отсюда

$$n = 1 + \frac{R}{2f} = 1,4 \pm 0,1.$$

Экспериментально измеряя f и R, мы можем найти n.

Измерение ёмкости и утечки электролитического конденсатора. 10 и 11 класс.

I. Теория

1. Формула разряда конденсатора через резистор (11 класс)

При разряде конденсатора через резистор R напряжение на конденсаторе U(t) равно напряжению на резисторе. Тогда

$$i(t) = \frac{U(t)}{R},$$

но через конденсатор ток определяется как:

$$i(t) = C \frac{dU}{dt}.$$

С учётом убывания напряжения получаем

$$C\frac{dU}{dt} = -\frac{U(t)}{R}.$$

Решение этого уравнения имеет вид

$$U(t) = U_0 e^{-\frac{t}{RC}},$$

где $U_0 = U(0)$ — начальное напряжение конденсатора.

Величина au=RC называется константой времени или временной постоянной цепи.

Оставшаяся энергия в конденсаторе через время $\tau=RC~(10~{\rm класc})$

Пусть конденсатор изначально заряжен до напряжения U_0 . Его начальная энергия:

$$E_0 = \frac{1}{2} C U_0^2.$$

При разряде через резистор R по закону

$$U(t) = U_0 e^{-\frac{t}{RC}},$$

через время $\tau = RC$ напряжение становится

$$U(\tau) = U_0 e^{-1} = \frac{U_0}{e}.$$

Тогда энергия в тот же момент:

$$E(\tau) = \frac{1}{2} C (U(\tau))^2 = \frac{1}{2} C \frac{U_0^2}{e^2} = E_0 \cdot \frac{1}{e^2}.$$

Численно $\frac{1}{e^2} \approx 0.135$. То есть это примерно 13.5% от первоначальной энергии конденсатора.

2. Определение ёмкости C

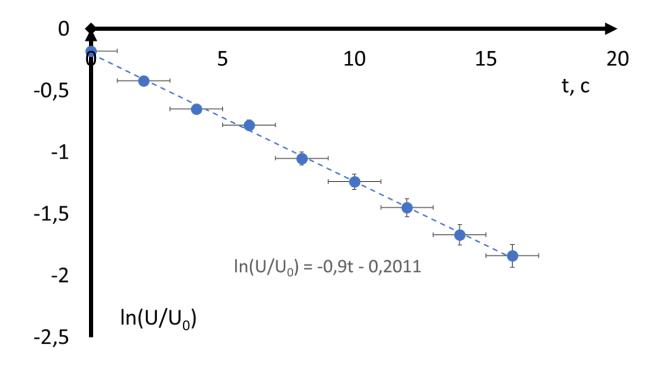
Из того же закона следует, что если записать напряжение U(t) в моменты времени t и построить график $\ln(\frac{U(t)}{U_0})$ от t, получится прямая с наклоном $-\frac{1}{RC}$. Таким образом, измеряя время t за которое напряжение падает, например, до U_0/e (или любым другим способом, используемым в эксперименте), мы можем вычислить $\tau = RC$ и тем самым найти $C = \frac{\tau}{R}$.

3. Сопротивление утечки при малом обратном напряжении

Если электролитический конденсатор подключить «наоборот» (при низком напряжении, порядка 1 В), то через него может протекать небольшой утечный ток. В стационарном режиме, когда ток и напряжение устоялись, можно говорить о некотором сопротивлении $R_{\rm yr}$. Если при подключённой батарейке $U_b \approx 1,2$ В мы наблюдаем через мультиметр устоявшееся напряжение $U_{\rm C}$ на конденсаторе, то по простому закону Ома можно приблизительно оценить $R_{\rm yr}$.

$$I = \frac{U_b - U_{\rm C}}{R_{\scriptscriptstyle
m BHeIIIH}}$$
 и $I = \frac{U_{
m C}}{R_{\scriptscriptstyle
m yT}}.$

Отсюда, зная $U_{\rm C},\,U_b$ и $R_{\rm внешн},$ можно вычислить R.


II. Эксперимент

1) Определение ёмкости конденсатора в прямом подключении.

- 1) Зарядим конденсатор от батарейки, зафиксировав напряжение U_0 .
- 2) Отключим источник и замкнём конденсатор на резистор R так, чтобы он разряжался через этот резистор.
- 3) Одновременно запустим секундомер и следите за падением напряжения U(t) (используем мультиметр).
- 4) Зафиксируем время, когда напряжение упадёт, например, до $U_0/e \approx 0.37\,U_0$. Это время есть $\tau=RC\approx 10$ с.
- 5) Измерим R мультиметром, получим 1 МОм. Тогда $C=\frac{\tau}{R}\approx 10$ мк Φ .
- 6) Для большей точности можно измерить несколько точек $(t_i, U(t_i))$ и построить график $\ln\left(\frac{U(t)}{U_0}\right)$ от t. Угловой коэффициент прямой будет $-\frac{1}{RC}$. Оба варианта решения оцениваются баллами.

2) Определение ёмкости при обратном подключении.

- 1) Повторим аналогичную процедуру разряда через тот же резистор.
- 2) Сравним полученную временную постоянную τ' и тем самым $C_{\text{back}} = \frac{\tau'}{R}$.
- 3) Типично для электролитических конденсаторов в обратном включении эффективная ёмкость может оказаться меньше (на проверенных конденсаторах отличие до 5%).

3) Измерение сопротивления утечки при малом обратном напряжении.

- 1) Подключим конденсатор в обратной полярности к батарейке.
- 2) Дождёмся, когда напряжение на клеммах конденсатора U_C стабилизируется.
- 3) Определим ток утечки I:

$$I = \frac{U - U_C}{R_{\text{доп}}}.$$

4) Определим её сопротивление:

$$R = \frac{U_C}{I} \approx 10 \text{ MOm}.$$

4) Учет сопротивления мультиметра.

- При измерении напряжения мультиметр имеет конечное входное сопротивление, обычно порядка $1-10\,\mathrm{MOm}$.
- Если резистор R или утечка $R_{\rm yr}$ оказываются в таком же диапазоне (мегаомы), то надо внести поправку на параллельное включение $R_{\rm yr}$ и $R_{\rm m} \approx 10\,{\rm MOm}$.
- Аналогично, при измерениях тока через мультиметр, его внутренняя схема добавляет сопротивление шунта.

Допускается указать какие погрешности измерений у вас при этом возникали или учесть параллельное сопротивление мультиметра в ходе.

Мёртвая петля. 11 класс.

I. Теория

1. Условие совершения полной петли вокруг стержня (радиуса r)

Предположим, что маятник длиной L подвешен в верхней точке, и на некотором расстоянии ниже (на расстоянии x от верха) расположен стержень. Если маятник (груз на нити) «перехватывается» за этот стержень, то дальнейшее движение идёт по окружности радиуса

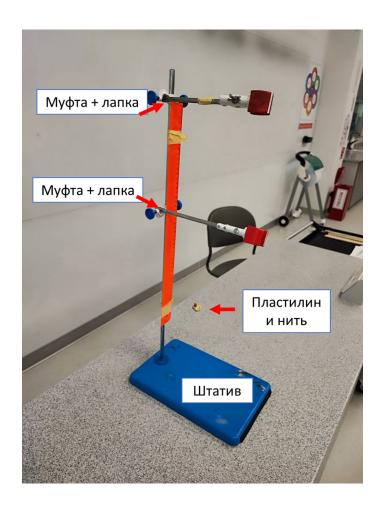
$$r = L - h$$

где h — отступ от верхнего подвеса. Чтобы груз прошёл полный оборот (т. е. совершил «мёртвую петлю» вокруг стержня), нужно, чтобы в наивысшей точке малой окружности (радиуса r) сила натяжения нити T была больше или равна нулю:

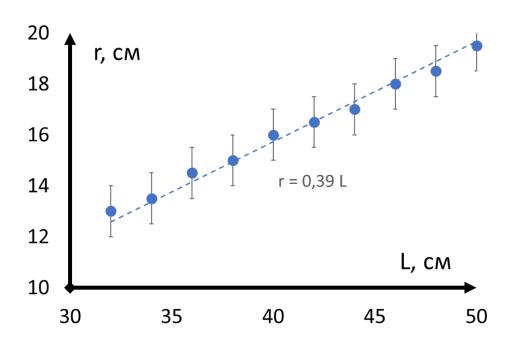
$$T \ge 0 \implies T = \frac{mv^2}{r} - mg \ge 0 \implies \frac{mv^2}{r} \ge mg \implies v^2 \ge gr.$$

2. Критический радиус r

В момент старта (угол α от вертикали) груз имеет потенциальную энергию (за отсчёт можно взять нижнее положение маятника или верхнюю точку—не столь существенно, важно лишь различие высот). При достижении верхней точки окружности радиуса r скорость должна быть v:


$$v^2 = v_0^2 - 4gr = 2gL - 4gr.$$

, где v_0 - скорость в момент начала движения по окружности r.


С другой стороны, в критическом случае $v^2 = gr = 2gL - 4gr = > r = \frac{2}{5}L$.

II. Эксперимент

1) Соберём установку с фото, она позволяет быстро менять длину L и измерять новый $r_{\rm kp}$. Важно отметить, что $r_{\rm kp}$ мы можем измерить меняя положение нижней муфты и смотря сбоку, пройдет ли маятник мертвую петлю по окружности или сорвется с неё. Это мы можем сделать не точнее, чем с шагом с которым двигаем муфту. Этот шаг не выходило сделать точнее 0.5 см, это погрешность определения $r_{\rm kp}$ и она является ключевой.

2) Для разных начальных L измерим критические значения радиусов $r_{\rm kp}$. И построим график $r_{\rm kp}$ от L, его угловой коэффициент и будет искомым значением.

3) Коэффициент наклона получившейся прямой получается равен $0,39\pm0,04$. Оценку на погрешность можно сделать по минимальному углу наклона возможной аппроксимирующей прямой и по максимальному её углу наклона с учетом погрешности измерения $r_{\rm kp}$.

	Сыпучее трение 2.0 – 9 класс	Балл
К1	Предложена идея о среднем давлении	1
К2	Выведена суммарная сила реакции опоры, действующая на поверхность линейки	3
КЗ	Верно записана итоговая формула для силы F(h)	1
К4	Определена насыпная плотность гречки	2
К5	Измерена зависимость силы трения, действующей на линейку, от высоты (0,5 за точку, максимум 3,5)	3,5
К6	Зависимость построена в линеаризованных координатах	2,5
К7	Из углового коэффициента графика измерен коэффициент трения (1 балл, если по усреднению, 0, если по одной точке)	2

	Оптическая Петри – 9 класс	Балл
К1	Построен правильный ход лучей	2
К2	Получена формула	2
К3	Построен график (1 балл за точку, максимум 3) 3 балла, определены погрешности точек 1 балл, определен угловой коэффициент 1 балл (при неверном числовом значении 0 баллов)	5
К4	Определено фокусное расстояние через угловой коэффициент 3 балла (при неверном числовом значении -1 балл), любым другим методом - 2 балла	3
К5	Рассчитан показатель преломления с обоснованием (при неверном числовом значении -1 балл)	3

	Измерение ёмкости и утечки электролитического конденсатора – 10 класс	Балл
К1	Верно оценена энергия оставшаяся в конденсаторе (1/e^2) (1 - если правильно	3
	записана энергия запасённая конденсатором)	
К2	Пояснено, как найти электроёмкость ($C = t/R$)	1
К3	Описан метод нахождения сопротивления утечки	1
К4	Описан метод нахождения напряжения от времени	1
К5	Измерены хотя-бы 2 напряжения в разные моменты времени	2
К6	Получена электроемкость 1-30 мкФ (из графика по не менее чем 5 точкам - 3,	3
	усреднением - 2, по 1 точке - 1)	
К7	Измерено правильным образом сопротивление утечки	2
К8	Верно оценено влияние сопротивления мультиметра (или оценена погрешность)	2

	Сыпучее трение 2.0 – 10 класс	Балл
К1	Предложена идея о среднем давлении	1
К2	Выведена суммарная сила реакции опоры, действующая на поверхность линейки (2	3
	балла только за h < hкp, 1 балл за P*S)	
К3	Верно записана итоговая формула для силы F(h)	1
К4	Формула модифицирована для погружения под углом	1
К5	Определена насыпная плотность гречки	1
К6	Измерена зависимость силы трения, действующей на линейку, от высоты (0,5 за	3,5
	точку, максимум 3,5)	
К7	Зависимость построена в линеаризованных координатах	2,5
К8	Из углового коэффициента графика измерен коэффициент трения (1 балл, если по	2
	усреднению, 0, если по одной точке)	

	Мертвая петля – 11 класс	Балл
К1	Записаны условия для совершения полной петли для силы натяжения (1), для скорости (1)	2
К2	Записан ЗСЭ для связи скорости в верхней точки окружности и параметров геометрии L,r (2), получено выражение для критического радиуса (1)	3
К3	Построен график r от L. (0.5 за точку, максимум 4)	4
К4	Определен угловой коэффициент в пределах погрешностей 0.39+-0.04, за значение в одной точке (1)	2
К5	Учтена погрешность линейки (1), другие существенные факторы (1), Проведена оценка погрешностей углового коэффициента (2)	4

	Измерение ёмкости и утечки электролитического конденсатора – 11 класс	Балл
К1	Верно выведена формула падения напряжения на конденсаторе (3 - если ответ	3
	доведен до конца, 1 - за выражение тока двумя способами)	
К2	Пояснено, как найти электроёмкость ($C = t/R$)	1
К3	Описан метод нахождения сопротивления утечки	1
К4	Описан метод нахождения напряжения от времени	1
К5	Измерены хотя-бы 2 напряжения в разные моменты времени	2
К6	Получена электроемкость 1-30 мкФ (из графика по не менее чем 5 точкам - 3,	3
	усреднением - 2, по 1 точке - 1)	
К7	Измерено правильным образом сопротивление утечки	2
К8	Верно оценено влияние сопротивления мультиметра (или оценена погрешность)	2